

Reduction of Development Costs of Full Composite Aero-Structure :A Proposal from a Research Sector

ICAS Biennial Workshop – 2011, Sept. 5, 2011 Stockholm, Sweden

Takashi Ishikawa Executive Director, Aviation Program Group (APG) and Aerospace Research and Development Directorate (ARD)

B-787 First Wing Roll-Out: Courtesy of Website of Mitsubishi Heavy Industries Co. Ltd.

Outline of the Presentation

Increase of composites percentage in aero-structures **Recent two major challenges: B-787 and A350 Precious lessons learned: Delay and cost issues, Unexpectedly low weight reduction, increase? Proposal for Development Cost Reduction** Substitution of some steps in BBA by "Virtual testing" **Essential difficulty: Progressive failure simulation Reduction of trial fabrication by "Virtual processing"** [Out of scope, today] **Example: Lower panel test of VaRTM wing, predictable** Example: Lightening strike damage, only at gateway If fails, industries may return to aluminum structures **Conclusions**

History of Composites Application to Aircraft

XA Two Major Challenges to Full **Composite Aero-Structures** A Case of Boeing B-787

Picture of B-787 in ANA Painting (Courtesy of New Release of Boeing Japan: May 26/2011

Pictures of B-787at Farnborough Air Show in 2010

Picture of B-787 Main Wing at Roll-out Ceremony at MHI O-e Plant

Courtesy of Website of MHI Co. LTD

Using Toughened Epoxy Prepreg: Auto tape lay-up machines are used in lamination process of wing skin

Successful Design Ultimate Test of B-787 Main Wing

Picture of Full Composite Fuselage of B-787

Precious Lessons Learned ▲ Difficulty in the processing **Demo Parts:** In the production, Work share by Kawasaki Heavy

Great Advantage of Composite Fuselage

Absolutely No Corrosion

Ind. (KHI), Japan

and Alenia, Italy.

Contribution to Passenger Amenity

Two Major Challenges to Full Composite Aero-Structures A Case of Airbus A-350 XWB

4350

© Airbus Proprietary

A350A

Full Composite Fuselage of A350 XWB above: Upper Panel, below: Demo Parts of Side Panel

Lessons Learned: Delay of Development, Cost Issues?

Proposal for Development Cost Reduction of Full Composite Aero-Structure

•Substitution of Some Steps in Building Block **Approach by High Accuracy Numerical** Simulation of Tests [Virtual Testing]: **Consideration of Damage Propagation in the** Failure Process = Essential Point Reduction of Trial Fabrication by High **Accuracy Numerical Simulation of Processing** [Virtual Processing]: **Out of Today's scope**

Established Procedure of Type Certification of Composite Aero-Structure Building Block Approach (BBA)

BBA is considered as inevitable approach. However, as a research sector, two questions can be raised.

Two Basic Questions

- 1. Sub-Components must be close in size to "Components"?
- 2. Some steps like elements and details can be replaced by numerical predictions?

"Virtual Testing"

JAXA pursues Development of VaRTM Composite Aero-Structures

Outline of technology for Low Cost Composite Manufacturing

VaRTM :(Vacuum assisted Resin Transfer Molding)

A Good Example of Virtual Test for Predicting Damage Propagation Shown in this Color

Bar Slide

Resin supply

Vacuum pump

Fabrication of 6m Full Size Panel

(Bagging and vacuuming) Heat Insulation Panel

Needless costly autoclave!

Fan heater blower

Simulation of Fabrication Process = Virtual Processing: One Point of Proposal Omitted in Today's Presentation

6m Full Size Wing Box in the Test Rig

Two life fatigue test of this box was finished

Photo of Static Load Test (100%)

Comparison of calculated (FEM) and experimental strain level at limit load test [at lower panel]

	S310	S134
FEM	2006	2260
Measured	1990	2331
Error [%]	0.8	3.0

S310

S134

Easy Work before the Progressive Failure : in Design Limit Load Test

Fatigue Test of VaRTM Structure: Test Plan

1 Initial strain survey

② Fatigue spectrum – 1 DSO with LEF=1.18, Life factor = 1.0

- Evaluate disbonding of stringer run-out

③ 100% DLL Verification

(4) Strain survey (static behavior of BVIDs, VIDs)

5 Fatigue spectrum – 1 DSO with LEF=1.18, Life factor = 1.0

- Evaluate impact damage growth and disbonding of stringer run-out

6 150% DLL Verification

⑦ Strain survey (effects of repair part)

⑧ Fatigue Spectrum- 2 inspection Intervals with LEF and Life factor

- Evaluate DT of repaired part

9 Destruction Test

DSO: Design service objective

LEF: Load enhancement factor (Considering Scatter of Fatigue Strength)

DLL: Design limit load

Fatigue Test of VaRTM: Lower Panel as Sub-component of Main Wing

Critical Portion: Edge of Stringer Run-out, Maintenance Hole

viation Drogram Grou

Fatigue Test of Lower Panel: Pre-test Analysis for Static Tension

Aviation Prooram Grou

Fatigue Test of Lower Panel: Preparation Procedure

- Fitting of Steel Loading Fixture to 2 Ends
- Loading: 2,500kN High Speed Actuator (MTS)
- Strain Channels: 76, Deflection Measurement Points: 4
- 3-D Optical Deformation Measurement (DIC)

Fitting by Bolts and Adhesion

Strain Gage Locations

Fatigue Test of Lower Panel: Strain Survey as the 1st Step

- Initial Adaptation of Fixture, Check of Measurement System, Comparison with Analysis
- Bestowment of Initial Damage at Edge of Stringer Run-out ⇒ Created at 82% DLL: Peel Force by Local Bending ⇒ No Detrimental Residual Deformation

Fatigue Test of Lower Panel: Inspection after Strain Survey

■ Non-Destructive Inspection by Using Array Probe Ultrasonic C-Scan ⇒Small Delamination at Tip of Stringer Run-out (5mm x 2mm)

Fatigue Test of Lower Panel: Evaluation of Delamination Growth

Inspection Interval: at Every 4,000 Flight (every 10% of DSO)
 By Human Eye: No Finding

□ NDI: Growth of Delamination at Stringer Run-out Tip

Fatigue Test of Lower Panel:

Numerical Analysis of Damage Growth

- Obtained Relationship between Delamination Length a and Energy Release Rate Distribution at Tip ⇒ Mode I Dominant (GI >> GII, GIII)
- Energy Release Rate Distribution
 - Width-wise (T): Maximum at the Center(= below Web)
 - Length-wise (L): Increase within a < 32mm \rightarrow Tend to Grow
 - : Decrease over $a > 32mm \rightarrow$ Tend to Stop

Fatigue Test of Lower Panel: Damage after Ultimate Load Test

- Loading to 150% DLL, Keep for 3 Seconds
- Slight Growth of Delamination at Stringer Run-out, No Finding other Detrimental Residual Deformation or Rigidity Reduction
- No effect on Structural Integrity

Current simulation level: not 100% complete, future task

Research of Lightening Strike to Aircraft Composite Structure: Background

Increase of CFRP application: Main wing

Topics

Damage mechanism by lightening
Residual strength and durability after strike
Method of repair/ strength after repair
Spark problems in integral fuel tank

 Japan Sea coast line in winter: Meteorological anomaly
 High energy, frequent lightening

Courtesy of website of Dr. Kawasaki (Osaka Univ.): (http://zenk.sblo.jp)

Simulated Artificial Lightening Test Final Goal: Elimination of Costly Test

Lightening Strike to Regular Compression after Impact Specimen

High Voltage Impulser, by HAEFELY Co. (Owned by Nisshin Electric Co. Ltd [Japan])

Maximum capability: 2400kV 120kJ Time Parameter for Impulse Currency Pattern: 4/10µs, 8/20µs, 0/350µs Maximum Currency: ±40kA (±20kA)

Fixture for specimen

Specimen ASTM D7131 (CAI)

IM600/133 [45/0/-45/90]4s (n=4) t = 4.7 [mm] 100×150 mm

Lightening Impulse Test Parameters

	Discharge condition					
	Waveform	Peak Current	Electrical	Action Integral		
	[µs]	[kA]	Charge [C]	$[A^2s]$		C
I		20	0.20	2831.38	Electrical charge	$Q = \int t dt$
II	2.6/10.5	30	0.31	6273.28		
III		40	0.41	11440.90	Action Integral : AI	$\Delta I = \int t^2 dt$
IV		20	0.42	5444.82	(Specific current	~ -) · · ·
V	4/20	30	0.63	12350.97	energy)	
VI		40	0.82	20887.35		

Obtained impulse current shape at simulated lightening test(4/20, 40kA)

Observed Damage Geometry

Region of charred resin

Wave profile : 4/20µs Peak current : 40 k A Action Integral : 2×10⁴[A²s] thickness : 4.7mm

Vicinity of impulse contact point

Observed two damage modes

□Surface damage

□Sublimation of fibers in some plies □Delamination under surface ply □Charred or sublimed resin: circular area

Estimated scenario: Created super high temperature by Joule heat due to high electric current ⇒Explosive sublimation of fiber or resin

Photo of damaged specimen

Region of

sublimed fiber

Understanding of Mechanism by Using Ultra-High Speed Video

Wave profile : 7/150[µs] Max. current : 20[kA] Action Integral (AI) : 3×10⁵[A²s] Thickness : 4.7[mm]

High-speed camera by Shimadzu Co. Ltd HPV-1 (1,000,000fps max.)

Frame rate: 500,000 fps Record duration: 200 µs

Internal Damage Pattern by Ultrasonic C-scan

Internal Damage Pattern by X-ray CT Scan and Actual Cutting

Pictures of cut sections

Photo of Micro X-ray CT Scanner

Results of Numerical Temperature Simulation (During and just after Lightening)

- Peak Current: 40kA, Wave Time Parameter: T1/T2=4/20
 During Lightening: 0~30 µsec., After Lightening: 30~50µsec.
- Gray Color Region Indicates over 3000°C (Decomposition→Delamination→Sublimation)

Temperature Distribution at Each Ply Current Simulation Level: Qualitative

- Peak Current: 40kA, Wave Time Parameter: T1/T2=4/20
- Regions over 300°C : Indicated
- Distribution Shape: Affected by Heat Conduction after Lightening

Relationship between Lightening Energy and Damage Extent

Delamination area (in projection)
 □ Fiber damage
 □ Resin char
 □Damage depth (Mainly delamination)

Next Step: More Quantitative EME Based Analysis

Almost linear relationships between AI (Specific current energy) and delamiantion area and AI and damage depth

Summary

Increase of composites percentage in aero-structures **Recent two major challenges: B-787 and A350 Precious lessons learned: Delay and cost issues, Unexpectedly low weight reduction, increase? Proposal for Development Cost Reduction** Substitution of some steps in BBA by "Virtual testing" "Virtual processing" : Out of scope, today Example: Lower panel of VaRTM wing test, potential of future substitution of BBA steps by simulation **Example: Lightening strike damage: difficult & costly** tests, at a gateway of accurate numerical simulation If high development costs remain in composites, aircraft industries may go back to aluminum again!